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Abstract—Modern developments in the state-of-the-art open-source activation functions for Convolutional Neural 

Networks (CNNs) have broadened the selection of benchmark activations for Deep Learning (DL)-aided 

classification. Nevertheless, achieving discrimination of non-linear input image data in CNN is still not 

straightforward and it is unclear how such novel activation functions can have translational applications with 

tangible impact. hyper-sinh, made freely available in TensorFlow and Keras, was demonstrated as a benchmark 

activation function on five (N=5) datasets in its ground-breaking paper. Measuring the value from deploying this 

activation in a specific application is pivotal to supply the required evidence of its performance on real-life 

supervised DL-based image classification tasks. In this study, a CNN was for the first time combined with hyper-

sinh to aid early detection of Parkinson’s Disease (PD) from discriminating pathophysiological patterns extracted 

from spiral drawings. Thus, the hyper-sinh activation was deployed to maximise the separability of the input 

features from spiral drawings via automated pattern recognition. We demonstrate the accuracy and reliability of 

hyper-sinh-CNN to aid early diagnosis of PD, evaluated against other gold standard activation functions, including 

the recent Quantum ReLU (QReLU) and the modified Quantum ReLU (m-QReLU) that solved the ‘dying ReLU’ 

problem for the first time in the literature of DL. Two (N=2) benchmark datasets from the database of the Botucatu 

Medical School, São Paulo State University in Brazil, scaled to be in 28 by 28 pixels as the MNIST benchmark 

data, were used to discriminate between input image patterns of 158 subjects (53 healthy controls and 105 patients 

with PD) from spirals drawn on graphics tablets. Overtraining was avoided via early stopping and the models were 

developed and tested in TensorFlow and Keras (Python 3.6). The supervised model (hyper-sinh-CNN) could detect 

early Parkinson’s Disease with 81% and 91% classification accuracy from the two datasets respectively (F1-scores: 

73% and 91% correspondingly). Furthermore, the model achieved high sensitivity (81% and 91%). Thus, this study 

validates the application of hyper-sinh to aid real-life supervised DL-based image classification, in particular early 

diagnosis of PD from spiral drawings. 
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1. Introduction  

Millions of patients live with Parkinson’s disease (PD) 

worldwide, which is a long-term neurodegenerative 

disorder resulting from damage to neurons that synthesise 

dopamine. As PD develops, tremor in one hand and bodily 

stiffness may be experienced; nevertheless, the main four 

symptoms are: tremor, stiffness in the limbs, decreased 

movement and coordination, difficulty with fine 

movements to accomplish the activities of daily living, 

such as eating and drinking. Whilst the underlying 

aetiology of PD remains unknown, there is no consensus 

on which biomarkers could be leveraged to provide a 

definite diagnosis of PD. To improve function, alternate 

treatments, such as exercise and full body vibration using 

painless vibrating machines to stabilise multiple muscles 

and posture have been investigated with promising results 

[1]. Advanced computational techniques have leveraged 

feature-driven Machine Learning (ML) to accomplish early 

detection of PD from patterns used as indicators of its 

related speech impairments [2].  

Impaired handwriting in PD patients may appear years 

before a clinical diagnosis is made and, thus, could be the 

first signs of possible PD [3]. By assessing handwriting via 

a digitiser, which measures the mean pressure and mean 

velocity, as well as the spatial and temporal characteristics 

of each stroke, previous research showed that 97.5% of the 

patients at risk of PD had significantly different writing 

with smaller letters (‘micrographia’), less force being 

applied and a significantly longer writing time [4]. More 

recent studies have stated the impairment in writing can be 

analysed easier via a computerised analysis of spirals [5, 

6]. 

The development of the open-source kernel function 

hyperbolic sinh or ‘hyper-sinh’ has provided a further 

benchmark kernel for Deep Learning (DL)-aided 

classification [7]. When coupled with the shallow ‘Fully-

Connected Neural Network’ (FC-NN) and the deep 

‘Convolutional Neural Network’ (CNN), its reliability and 

computational efficiency have been demonstrated on five 

benchmark datasets for aiding both image and text 

classification tasks [7]. However, besides its 

reproducibility, additional studies need to verify its 

replicability for other applications. In fact, CNN may be 

unable to achieve linear separability of noisy image data, 

due to activation functions incurring vanishing [8] or 

exploding [9] gradients leading to poor or lack of 

convergence.  

In these scenarios, failure of the activation functions in 

the CNN to converge may lead to misclassifications and, 

thus, result in misdiagnoses when deployed in a clinical 

setting. Convergence during training can be aided by 

selecting an optimal activation function to facilitate 

learning from non-linear data to ensure they can be linearly 

separable [2, 7, 10-14]. As the traditional activation 

function involved in the training of CNN, i.e., the Rectified 

Linear Unit (‘ReLU’), is affected by the ‘dying ReLU’ 

problem [15, 16], which, despite appropriate He 

initialisation [17], is characterised by negative summed 

inputs with large weight updates. Recently, the Quantum 

ReLU (‘QReLU’) and modified Quantum ReLU (‘m-

QReLU’) were developed in TensorFlow and Keras [18] 

and validated against nine ReLU-based AFs on seven 

benchmark datasets as the first activation functions to 

resolve this long-standing issue in the literature of DL [16]. 

In fact, both the QReLU and the m-QReLU were 

demonstrated to aid complex medical diagnostics, such as 

detecting COVID-19 from ultrasound images and early PD 

from spiral drawings [16]. 

As an alternative approach, the modified arcsinh (‘m-

arcsinh’) developed as a generalised kernel and activation 

function in scikit-learn [19] was validated on 15 

benchmark datasets from scikit-learn and the University 

California Irvine (UCI) ML repository [10]. Building on 

the m-arcsinh, the hyperbolic sinh or ‘hyper-sinh’ was 

developed to generalise its formulation to be accurate and 

reliable from shallow to deep neural networks in 

TensorFlow and Keras [20] and validated on 5 benchmark 

datasets, involving both image and text classification tasks 

[7]. 

This study’s novelty lies in assessing the replicability 

of the hyper-sinh in a clinical application, along with 

assessing its performance when coupled with a CNN 

against gold standard activation functions, including the 

recent QReLU and m-QReLU [16]. In this research work, 

such a supervised DL technique was leveraged to perform 

a classification task that involves noisy data with 

overlapping features, i.e., image data of spirals drawn on a 

graphics tablet to discern patterns as indicators of healthy 

and PD [16], to aid diagnosis of PD from the underlying 

image-based patterns associated with its characteristic 

subtle tremor at early stages.  
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2. Automated detection of 

parkinson’s disease from image 

data 

 

2.1 Data and Software for Modelling 

 

To demonstrate the accuracy and reliability of early 

detection of PD from image patterns from spiral drawings 

on graphics tablets via the proposed algorithm, the 

following two datasets with image features from 53 healthy 

subjects and 105 patients with PD were obtained from the 

database of the Botucatu Medical School, São Paulo State 

University in Brazil:  

 Spiral HandPD dataset (data format: .jpg) [21] on 

92 subjects (74 PD patients, 18 healthy controls). 

 NewHandPD dataset (data format: .jpg) [22] on 

66 additional subjects (31 PD patients, 35 healthy 

controls). 

Both datasets were represented as one-dimensional 

(1D) vectors of 784 features for each image (28*28 pixels); 

training and testing datasets were used as per the 

proportions already established from the two benchmark 

datasets used.  

The data were reshaped to match the picture format 

(height * width * channel) and then, to a four-dimensional 

(4D) tensor input (batch size, height, width, channel). The 

image datasets underwent min-max normalisation to 

prepare them for the subsequent CNN-based classification.  

The CNN model was developed and evaluated via the 

Keras library in Python, whilst the hyper-sinh [7] 

activation function was developed in both TensorFlow and 

Keras [20]. All other activation functions evaluated 

(ReLU, Leaky ReLU, sigmoid and tanh) are available in 

Keras, except for the custom QReLU and m-QReLU [16] 

also developed and available in both TensorFlow and 

Keras [18]. 

 

2.2 hyper-sinh-based CNN Algorithm 

 

CNN is a deep neural network-based classifier that 

leverages convolutional layers and filters to achieve 

automated pattern recognition without the need for 

extrinsic feature engineering and separability of the input 

image data based on the activation function deployed [16, 

20, 23]. These input data must be labelled, since the CNN 

is a supervised DL-based learning classifier, thus the class 

which each input image belongs to is preliminarily known.  

The choice of which activation function to use within 

convolutional layers impacts the accuracy and reliability of 

the classification of such input data into the target classes 

[16, 20, 24]. Thus, in this study, CNN was assessed with 

various activation functions, including the recently 

developed hyper-sinh [7], which scales from shallow to 

deep neural networks, such as the CNN.  

To avoid overtraining or overfitting, thus preventing the 

model from ‘remembering’ the features seen during 

training and enabling learning that yields generalisation, 

early stopping was applied [23, 24]. The Adam optimiser 

was used for training, whilst the loss or probability error to 

minimise was the sparse softmax cross-entropy between 

logits and labels, as suitable in the discrete classification 

task of interest in which the classes (healthy and PD-related 

spiral drawings) are mutually exclusive (each image is 

either characteristic of healthy or PD-related patterns).  

Given its ability to cope with non-linearly separable 

data, the hyper-sinh (Fig. 1) activation function was 

coupled with CNN and evaluated against other gold 

standard activations (ReLU, Leaky ReLU, sigmoid, tanh, 

QReLU and m-QReLU [16]). 

     The equations for the hyper-sinh activation function for 

positive values of input (x) data, and negative values and 

zero, are available in (1) and (2) respectively.   

 

𝑦 =  
sinh 𝑥

3
 𝑖𝑓 x > 0 , 

                              𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎   

 

 

                            𝑦 =  
𝑥3

4
 𝑖𝑓 x ≤  0                               (2) 

 

     A flattening layer was applied to flatten the input data 

to a one-dimensional (1D) vector for the fully connected 

layer. The output layer had two neurons, as per the number 

of classes to discriminate (healthy vs PD-related image 

patterns). In Table I, these and other hyperparameters used 

in the CNN model tested in this study are listed, which 

  (1) 
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were leveraged to classify both benchmark datasets, 

regardless of the activation functions evaluated. 

TABLE I. LEARNING HYPERPARAMETERS FOR THE CNN 

MODEL USED FOR BOTH BENCHMARK DATASETS AND 

REGARDLESS OF THE ACTIVATION FUNCTIONS DEPLOYED. 

Hyperparameter Value 

Learning rate 0.001 

Maximum number of epochs or 

training iterations 

15 

Batch size 128 

Dropout rate prior to output layer 0.25 

Number of convolutional layers 2 

Number of max pooling (down-

sampling) layers 

2 

Number of convolutional filters in first 

convolutional layer 

32 

Kernel size of first convolutional layer 5 

Number of convolutional filters in 

second convolutional layer 

64 

Kernel size of second convolutional 

layer 

3 

Number of strides in max pooling layer 2 

Kernel size of max pooling layer 2 

Number of neurons in fully 

connected/dense layer 

1,024 

Number of neurons in final output layer 2 

 

2.3 Performance Measures to Validate 

Model Accuracy and Reliability 

 

The classification performance of the CNN was 

evaluated quantitatively based on the trade-off between 

accuracy and reliability on the test sets [7, 10-14, 16, 20] 

whilst applying early stopping to avoid overfitting or 

overtraining; the latter metric was assessed via multiple 

quantifiers, i.e., precision, recall and F1-score as their 

harmonic mean, thus representing their trade-off.  

In binary classification problems, e.g., discriminating 

between healthy and PD-related image patterns, classes can 

be defined as ‘true’ or ‘false’, resulting in four scenarios 

(Table II):  

 

 true positive (TP), the occurrence of 

pathophysiological image patterns correctly 

detected (e.g., due to PD). 

 true negative (TN), physiological/healthy speech 

image correctly classified. 

 false positive (FP), physiological/healthy image 

patterns misclassified as if they were 

pathophysiological instead. 

 false negative (FN), the occurrence of a 

pathophysiological image patterns misclassified 

as if they were physiological/healthy instead.  

 

TABLE II. CONFUSION MATRICES RELATING THE ACTUAL 

AND PREDICTED IMAGE PATTERNS AS TO WHETHER THEY 

ARE INDICATORS OF PATHOPHYSIOLOGICAL TREMOR (E.G., 

DUE TO EARLY PARKINSON’S DISEASE). 

 

Actual 

True  

(pathophysiological 

image patterns) 

False  

(physiological 

image patterns) 

P
r
e
d

ic
te

d
 

Positive  

(pathophysiological 

image patterns) 

TP FP 

Negative  

(physiological 

image patterns) 

FN TN 

 

Besides the classification accuracy, the classification 

performance of the CNN with the various activation 

functions tested were assessed via two further performance 

metrics as indicators of reliability, i.e., precision and recall 

(Tables III and IV).  

As a more comprehensive quantifier of the model 

reliability, the F1-score was computed too (Tables III and 

IV), which corroborates or disproves the test classification-

related outcomes.
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                 a)                                                       b)      

Figure 1. The hyper-sinh activation function for positive values of input data (a)) and for negative values or zero of input data (b)). 

 

III. HYPER-SINH WITH A CONVOLUTIONAL NEURAL 

NETWORK FOR SUPERVISED DEEP LEARNING-BASED 

AUTOMATED DETECTION OF PARKINSON’S DISEASE 

 

A quantitative analysis of classification accuracy and 

reliability was performed for automated early detection of 

PD from image patterns from spiral drawings when 

considering both benchmark datasets (Tables III and IV): 

Both accuracy and reliability metrics have been 

reported in Tables III and IV, as well as their 95% 

confidence intervals. 

 

TABLE III. COMPARISON OF CLASSIFICATION 

PERFORMANCE OF THE CONVOLUTIONAL NEURAL 

NETWORK WITH ALL ACTIVATION FUNCTIONS TESTED, 

EVALUATED ON THE SPIRAL HANDPD BENCHMARK 

DATASET [21]. 

Activation 

function 

Accuracy  

(0-1) 

Precision  

(0-1) 

Recall 

(0-1) 

F1-

score 

(0-1) 

ReLU 0.81 

(0.76-0.87) 

1.00 

(0.98-1.00) 

0.81 

(0.78-

0.83) 

0.90 

(0.85-

0.93) 

Leaky ReLU 0.82 

(0.79-0.85) 

0.83 

(0.81-0.85) 

0.82 

(0.79-

0.84) 

0.83 

(0.80-

0.84) 

Sigmoid 0.85 0.88 0.85 0.86 

(0.80-0.88) (0.85-0.90) (0.82-

0.87) 

(0.83-

0.88) 

Tanh 0.82 

(0.81-0.85) 

0.92 

(0.90-0.94) 

0.82 

(0.79-

0.84) 

0.86 

(0.82-

0.88) 

QReLU 0.88 

(0.87-0.90) 

0.95 

(0.93-0.97) 

0.88 

(0.87-

0.90) 

0.90 

(0.88-

0.92) 

m-QReLU 0.92 

(0.90-0.95) 

0.95 

(0.94-0.96) 

0.92 

(0.90-

0.94) 

0.93 

(0.91-

0.95) 

hyper-sinh 0.81 

(0.78-0.83) 

0.66 

(0.65-0.69) 

0.81 

(0.79-

0.84) 

0.73 

(0.72-

0.75) 

QReLU: Quantum ReLU; m-QReLU: modified Quantum ReLU; hyper-

sinh: hyperbolic sinh. 

 

TABLE IV. COMPARISON OF CLASSIFICATION 

PERFORMANCE OF THE CONVOLUTIONAL NEURAL 

NETWORK WITH ALL ACTIVATION FUNCTIONS TESTED, 

EVALUATED ON THE NEWHANDPD BENCHMARK DATASET 

[22]. 

Activation 

function 

Accuracy 

(0-1) 

Precision  

(0-1) 

Recall 

(0-1) 

F1-

score 

(0-1) 

ReLU 0.75 

(0.73-

0.76) 

0.76 

(0.74-

0.78) 

0.75 

(0.73-

0.77) 

0.76 

(0.74-

0.77) 
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Leaky 

ReLU 

0.83 

(0.82-

0.84) 

0.83 

(0.81-

0.84) 

0.83 

(0.81-

0.84) 

0.83 

(0.81-

0.84) 

Sigmoid 0.57 

(0.53-

0.59) 

1.00 

(0.73-

1.00) 

0.57 

(0.54-

0.59) 

0.72 

(0.69-

0.75) 

Tanh 0.94 

(0.93-

0.95) 

0.94 

(0.92-

0.95) 

0.94 

(0.92-

0.95) 

0.94 

(0.92-

0.95) 

QReLU 0.83 

(0.82-

0.85) 

0.83 

(0.81-

0.86) 

0.83 

(0.82-

0.84) 

0.83 

(0.82-

0.85) 

m-QReLU  

 

0.79 

(0.78-

0.81) 

0.79 

(0.77-

0.82) 

0.79 

(0.78-

0.80) 

0.79 

(0.78-

0.81) 

hyper-

sinh 

0.91 

(0.89-

0.94) 

0.91 

(0.88-

0.94) 

0.91 

(0.89-

0.94) 

0.91 

(0.89-

0.94) 

QReLU: Quantum ReLU; m-QReLU: modified Quantum ReLU; hyper-

sinh: hyperbolic sinh. 

 

3. Discussion and Conclusion 

 

The supervised DL-based algorithm alone (CNN) could 

detect early PD with 81% and 91% classification accuracy, 

and 73% and 91% F1-score (Tables III and IV) via the 

recent hyper-sinh activation function on the PD-related 

Spiral HandPD [21] and the NewHandPD [22] image 

datasets, respectively. Thus, the hyper-sinh [7], when 

coupled with a CNN, led to the highest classification 

performance (Tables III and IV). The QReLU and m-

QReLU also performed better than the other activation 

functions when classifying both datasets (88% and 83% 

classification accuracy, and 90% and 83% F1-score, 

Tables III and IV), except for the tanh function for the 

second dataset. The sigmoid activation functions led to the 

worst classification performance on the NewHandPD 

dataset (57% classification accuracy, Table IV), despite a 

good reliability (72% F1-score, Table IV).  

This study validates the use of hyper-sinh when 

coupled with a CNN for supervised DL-based 

classification to aid early detection of PD from image 

features of spiral drawings from graphics tablets, which is 

an inexpensive and non-invasive tool to facilitate its early 

diagnosis. 

Future work is underway to understand if 

hyperparameter optimisation can level out differences in 

overall classification performance of the CNN when 

leveraging the activation functions ‘hyper-sinh’, ‘QReLU’ 

and ‘m-QReLU’. Additional training data will be required 

minimise the overlapping regions of the transformed data 

associated with physiological and pathophysiological 

tremor more reliably. 
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